
UCRL-CONF-209351

Material Interface Reconstruction
in VisIt

J. S. Meredith

February 1, 2005

NECDC2004
Livermore, CA, United States
October 4, 2004 through October 8, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
1

Material Interface Reconstruction in VisIt (U)

J.S. Meredith

Lawrence Livermore National Laboratory, Livermore, California 94550

In this paper, we first survey a variety of approaches to material interface
reconstruction and their applicability to visualization, and we investigate
the details of the current reconstruction algorithm in the VisIt scientific
analysis and visualization tool. We then provide a novel implementation
of the original VisIt algorithm that makes use of a wide range of the finite
element zoo during reconstruction. This approach results in dramatic
improvements in quality and performance without sacrificing the strengths
of the VisIt algorithm as it relates to visualization. (U)

Introduction

Background
Computer simulations of physical

phenomena have a need to support materials,
i.e. discrete regions of space with different
physical properties. For example, a simulation
of tidal waves needs to partition space into
water and air, and a simulation of an
automobile accident must model glass, metal,
and rubber. In these simulations, space is often
divided into a computational mesh of cells.
However, to maintain accuracy, the material
regions will not necessarily conform to the
cells of the mesh. (See Fig 1.) Sometimes,
this is because the mesh is static and the
materials move; sometimes it is because the
mesh cannot deform to handle the twisting and
bending of materials without tangling; and
sometimes it is simply because the materials
must be modeled at a higher resolution than the mesh to maintain accuracy. The result is
that very often, a single cell may be mixed: the cell is composed of pieces of two or more
materials. Cells that contain only one material are called clean.

Fig. 1. Material boundaries will not in
general conform to the cells of the mesh.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
2

Since the materials can now be of greater resolution than the mesh, the question of
how to keep track of this material information in mixed cells becomes a problem. The
typical method has been to store in each cell just the
material volume fractions (VFs), or the percentage of
the cell filled with each material. Unfortunately, the
shape of the interface is not typically stored. (See Fig.
2.) A difficulty in visualizing results from these
simulations thus involves determining what the
material interfaces looked like based purely on what
volume fractions are stored for each material in a cell.
Methods of reconstruction and tracking of these
mixed material interfaces have been researched since
the 1960s. They are important for visualization, but
they are also important for physical simulations
themselves since an inaccurate reconstruction can give
inaccurate results.

To help explore what it means to have a good
reconstruction, let us imagine a very simple example:
a 3x3 cell mesh where exactly the bottom half of the
mesh is water and the top half is air. (See Fig. 3) This
means the top three cells are completely air, the
bottom three cells are completely water, and the
middle three cells contain half water and half air.
These three middle cells are mixed, and it is the

reconstruction method that must determine which portion of each of these cells is air and
which is water. In this simple example, it makes both intuitive and physically meaningful
sense that the center cell is “correctly” reconstructed by assigning water to the bottom
half of the cell and air to the top half of the cell. Other examples, such as the one of
Figures 1 and 2 are not quite as obvious; “correctness” should be probably be defined not
only in terms of accurately recreating an interface which covers the exactly quantity of a
mixed cell, but that it puts the materials in a natural position within the cell.

Survey of Previous Methods
One of the first methods for material interface reconstruction (MIR) is a method that

uses tracking particles to define the interface (Amsden, 1966). Noh and Woodward
(1976) created the simple line interface calculation (SLIC), which determines the material
interface using these volume fractions. SLIC is a piecewise constant method which aligns
the material interface with one of the major coordinate axes. Also originating at this time
were similar piecewise constant/stair-stepped methods such as the volume-of-fluid (VOF)
method (Nichols and Hirt, 1975). An improvement to these methods came with
piecewise linear interface calculations (PLIC) such as the one from Youngs (1992).

 0.0 0.0 0.0

0.5 0.5 0.5

1.0 1.0 1.0

 1.0 1.0 1.0

0.5 0.5 0.5

0.0 0.0 0.0

Fig 3: Example volume fractions for
water (left) and air (right)

1.0

1.0 1.0 1.0

1.01.01.0

0.2

0.8

1.0 1.0 1.0

1.0 0.5

0.5

0.2

0.8

0.1

0.9

0.6

0.4

1.0

1.0 1.0 1.0

1.01.01.0 1.01.0

1.01.0 1.01.0 1.01.0

1.01.01.01.01.01.0

0.2

0.8

0.2

0.8

1.0 1.0 1.0

1.0

1.01.0 1.01.0 1.01.0

1.01.0 0.5

0.5

0.5

0.5

0.2

0.8

0.2

0.8

0.1

0.9

0.1

0.9

0.6

0.4

0.6

0.4

Fig. 2. Volume fractions for the
boundaries shown in Fig. 1.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
3

When performing reconstruction on a cell, most
of these methods examine a window around the cell
for the contextual information needed to determine
the shape of the interface in that cell. To continue
with our earlier example, see Fig. 4, where a cell of
interest is outlined in red, and a window around it is
outlined in blue.

Examining the PLIC Algorithm
Since the PLIC algorithm is commonly used, we

will examine it in more detail. First, select a
material to reconstruct. This step by itself is often a

source of error because a “correct” reconstruction requires,
for reasons that will become clear, that we follow the
materials in order from the outside in. In this example we
choose the green material, and its volume fractions for the
cell of interest and surrounding window are shown in Fig. 5.

Next, calculate the slope of the interface using a window
around the cell of interest (for example, using the gradient of
volume fractions), and then calculate the intercept of that
interface line such that it intersects the exact volume fraction
in the cell of interest. Fig. 5 also shows this slope and
intersection position. Once this is done, fill in the chosen
material as in Fig. 6.

This leaves empty space in the cell, and the process is
repeated for each material using the unallocated space in that
cell. Finally, when there is only one material remaining, its
volume fraction by definition must be exactly the same as the
remaining amount of empty space, so we simply fill the
remaining space with that remaining material.

This process is repeated for all
cells: choose a material, find the
slope, intersect the cell, fill with

that material, and repeat for all materials. When done, our
example looks a lot like Fig. 7. As a final note, be aware that
this algorithm is not limited to structured 2D grids.

Material Interface Reconstruction for Visualization
One must note that the methods shown above, are

concerned not just with the interface reconstruction, but also
with the ability to track materials using this reconstruction. In other words, these
algorithms are not designed to look correct, but to perform correctly within a CFD or

1.0

1.0 1.0

1.01.0

0.2

0.8

1.0 1.0 1.0

1.0 0.5

0.5

0.2

0.8

1.0

1.0

0.1

0.9

0.6

0.4

1.0

1.0 1.0

1.01.0

0.2

0.8

1.0 1.0 1.0

1.0 0.5

0.5

0.2

0.8

1.0

1.0

0.1

0.9

0.6

0.4

1.0

1.0 1.0

1.01.0

0.2

0.8

1.0 1.0 1.0

1.0 0.5

0.5

0.2

0.8

1.0

1.0 1.0

1.01.0

0.2

0.8

0.2

0.8

1.01.0 1.0 1.01.0

1.01.0 0.5

0.5

0.2

0.8

0.2

0.8

1.0

1.0

0.1

0.9

0.1

0.9

0.6

0.4

0.6

0.4

Fig. 4. A cell of interest (red) and its
window of surrounding cells.

0.2

1.01.0 1.0 1.01.0

1.01.0 0.5 0.2

0.0 0.0

Fig. 5. Slope and
intersection for PLIC

0.2

1.01.0 1.0 1.01.0

1.01.0 0.5 0.2

0.0 0.0

Fig. 6. End of first
material pass in PLIC.

Fig. 7. Final result of PLIC.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
4

hydrodynamics code. This makes visualization of material interfaces using these methods
unappealing. Their primary drawback is that the interface is never designed to be
continuous across cells. In two dimensions, visualization would clearly show the stair
stepping and discontinuities inherent in these algorithms, and Fig. 7 shows this clearly.
In three dimensions, a lack of continuity means a lack of connectivity, and makes most
geometric algorithms on the reconstructed mesh unnaturally difficult. In fact, it is
impossible using only a single linear interface to obtain an interface that is guaranteed to
be both accurate and continuous across cell boundaries, because it can only approximate
what should in many cases be a curved line.

One approach that guarantees continuity is called the Isosurface method. It generates
a continuous variable based on volume fractions, and finds interfaces where a material
volume fractions is exactly equal to the value 0.5. Using this
method, it is possible to force many visualization codes that
do not natively understand materials to do a plot of these
material interfaces. However, this method has some
drawbacks. First, since it does not understand natively what a
material is, it cannot respect clean cells, and it will often draw
interfaces through them. Second, it will leave “gaps” where
three or materials approach each other. Third, it cannot
guarantee that it will reconstruct the correct amount of
material in a cell as specified by the volume fractions used as
input to the method. And fourth, it is a surface based
approach and cannot be used to perform reconstruction
before doing further visualization operations like slicing.
Some of these consequences of these will be shown later.

The VisIt scientific visualization code of Lawrence
Livermore National Laboratory uses a different method to
reconstruct and visualize mixed material meshes. The basic
premise is similar to the isosurface algorithm, except that it
natively understands what a material is, and it finds surfaces
where the material volume fractions are equal to each other.

The outline of this algorithm is the following. First,
collect the volume fractions for all materials in the cell of
interest and the window around it (see Fig. 8). Second, create
a linearly interpolated variable over the mesh using the
volume fractions for each material. This is done in this case
by averaging the volume fractions of each material in all four
cells surrounding a mesh node to that node (see Fig. 9), then
repeating for all nodes in the cell of interest for all materials
(see Fig. 10).

Next, using an interpolation function (such as bilinear
interpolation), evaluate the function for each material at every
point within the cell. Where the value for the blue material is

1.0 1.0

0.2

0.8

1.0 1.0 1.0

1.0 0.5

0.5

0.2

0.8

0.00.0

0.0

0.0

0.0 0.0

1.0 1.0

0.2

0.8

0.2

0.8

1.01.0 1.0 1.01.0

1.01.0 0.5

0.5

0.2

0.8

0.2

0.8

0.00.0

0.0

0.0

0.0 0.0

Fig. 8. All volume fractions
for all materials.

1.0 1.0

0.2

0.8

1.0

0.2

0.8

0.0

0.0 0.0

0.9
0.1

0.4
0.6

0.7

0.2
0.8

0.3

Fig. 10. Final nodal VFs
for the cell of interest.

0.9

1.0 1.0

1.0 0.5

1.0 1.0

0.2

0.8

1.0

0.2

0.8

0.0

0.0 0.0

0.5

0.00.0

0.0 0.5

0.00.0

0.0

0.1

Fig. 9. Averaging cell-
centered VFs to the nodes.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
5

greater, it is determined that the point contains our blue
material, and where green is greater, it is determined that the
point contains our green material.

For this example, the blue material has the greatest value in
the lower-right portion of the cell, and the green material has
the greatest value in the upper-left portion of the cell, leading
to results in the cell of interest that look like Fig. 11. Note that
for a linear interface within a cell, the evaluation need not
actually happen at every point in the cell; the actual
implementation is much more efficient for linear interfaces
because it only calculates the intersections along the cell edges.

This example shows only two materials, but the extension to three materials is
actually very straightforward in that there was no assumption in the mathematics about
the number of materials. Where the real difference lies is in the comment in the previous
paragraph concerning an efficient implementation – it actually calculates intersections
between pairs of materials. To accomplish this, it handles multiple materials by visiting
them in stages, and the output of each stage will be the input to the next. For example,

examine Fig. 12 where we
show the full reconstruction
process one stage at a time. In
Fig. 12a we have the square
input cell, and are visiting the
green material, and we have
trivially determined that of all
visited materials and the new
material, the green one is

greatest at all four corners and thus the output from the first stage is at Fig. 12b. In Fig.
12b, we decided that when visiting the blue material, the blue material was greater than
the green material at the bottom two corners, and as output from this stage we get Fig.
12c. Now we have two intermediate cells as input to this third stage where we examine
the red material. We decide for the blue input cell that red is now greatest along the right
edge, and we decide for the green input cell that red is also greatest along the right edge.
This gives us as final output Fig. 12d. Note that while we visited the materials in some
order, unlike the PLIC algorithm the particular order we
choose will have almost no impact on the final result.

This approach has another distinct advantage, which is
that it is guaranteed to generate continuous interfaces from
one mixed cell to the next (see Fig. 13); the values obtained at
a node by averaging the neighboring four cell are the same no
matter which cell of the four we are considering. This means
the interpolant generates the same values at any edge no
matter which of the two cells along the edge we are
considering. Note that there is what appears to be a

0.9

0.4

0.1

0.6

0.7

0.2
0.8

0.3

Fig. 11. Final result in the
cell of interest.

Fig. 13. Final result of the
visualization reconstruction.

(a) (b) (c) (d)

Fig. 12. The input cell is at (a). Intermediate stages in the
reconstruction at (b) and (c). Final output at (d).

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
6

discontinuity in Fig. 13, but in fact this is merely showing the ability for this method to
respect clean cells, unlike the Isosurface method. Specifically, this need not break
connectivity; simply reconstruct this clean cell as if it were mixed but before completing
reconstruction on that cell, force all output geometry to be the correct (clean) material.
This generates reconstructed geometry with good connectivity that still respects clean
cells.

In addition, this approach, like the isosurface approach, generates boundaries which
look subjectively “good” – the water material in some mixed cell will be near the water in
neighboring cells, and the air material in a mixed cell will be near the air in neighboring
cells. In general, this technique will not be exactly accurate; as mentioned above, with so
few degrees of freedom it may be impossible to ensure accuracy if it ensures continuity
anyway. However, it produces results more suitable for scientific visualization.

Reconstruction for Visualization in Three Dimensions
Like the PLIC algorithm, the VisIt algorithm intuitively extends to three dimensions.

However, like the isosurface algorithm, the earliest implementations of this algorithm in
three dimensions had the disadvantage of reconstructing only surface geometry instead of
a pure volumetric reconstruction; this produced some of the same aberrant results as the
isosurface algorithm. More recently, a volumetric method was created to solve these
problems, and it is this latest iteration that has been the most successful in terms of
generating the best results for visualization.

However, the cost of a full volumetric reconstruction is expensive in terms of code
size and complexity, memory usage, output cell and polygon count, and execution time.
The reasons for this are many. For one, there are potentially many material in a single
mesh, and unlike the isosurface algorithm, the materials cannot be reconstructed in
isolation from the other materials – this forces the algorithm to keep more in memory at a
time.

In addition, a surface reconstruction can output a single polygon per material per zone
mixed, but a volumetric construction in general cannot output a single cell per material
per mixed zone. Imagine slicing a cube in half at an angle such that the face between the
two halves is a pentagon or hexagon. Since the primitive cell types have only three or
four sided faces, each half must by definition be composed of more than one cell. To
phrase this differently, the difficulty is that a volumetric reconstruction almost
necessitates working with arbitrary polyhedra. This is not particularly difficult in two
dimensions, but to remain feasible in three dimensions, a different approach must be
taken.

A common approach in spatial algorithms like this relies on splitting cells into
tetrahedra, because of the simplicity of the tetrahedron and the small number of ways one
can split a tetrahedron. In other words, step one in a volumetric reconstruction is to take
the input mesh and convert every cell into tetrahedra, then perform reconstruction on the
tetrahedral mesh.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
7

There wind up being two nontrivial ways to split a tetrahedron: the first generates a
tetrahedron and a wedge as output; the second generates two wedges as output. Recall,
however, that as we visit other materials in the cell we must take these output shapes and
feed them back as input. Since we cannot operate on a wedge, we must convert that
wedge into three new tetrahedra, so a single cut on an a tetrahedron will wind up with
four or six – not two – shapes as input to the next stage.

Furthermore, simply breaking up a nontrivial mesh into tetrahedra without breaking
connectivity is not an easy task and can be counterproductive. One major problem with
tetrahedralization is that if one is not very careful about how they tetrahedralize every one
of the input cells, then they might break the connectivity of the mesh before even
beginning the material interface reconstruction. Specifically, there are 26=64 different
ways to tetrahedralize any individual hexahedron. If for any cell, you choose a
tetrahedralization that does not correctly match with its neighbors, you have broken
connectivity before reconstruction, and no intelligent choice of reconstruction algorithm
is going to fix it.

This problem is shown in more
detail in Fig. 14. The two cells at
the top of the figure share a
quadrilateral face. The bottom left
and bottom right images show these
two cells under two different sets of
tetrahedralizations. The bottom left
image shows a poor matching of
tetrahedralizations. What happened
in this case is that when the hex was
split into tets, the quadrilateral was
thus split into triangles (i.e. the
faces of the tets), and the two cells
did not agree on how to split that
quadrilateral. This causes an
immediate break in face

connectivity, disrupting most further visualization operations. The image on the bottom
right, however, shows a good matching of tetrahedralizations, because both pairs of
triangles of that matching face have all their nodes the same, and thus connectivity is not
broken.

The most obvious solution appears at first glance to be global: pick a
tetrahedralization for one cell, then ensure that for your neighbors you pick one that
matches. Luckily, there is a local solution you can guarantee is correct without having to
look at your neighbors, under the commonplace assumption that the node indexing is
unique. It is as simple as this: always split any quadrilateral face along the diagonal
starting at the lowest numbered node. For a hexahedron, for example, we pick from one
of two possible splits for each of the six quadrilateral faces, giving us exactly one of the
64 possible tetrahedralizations. Since the node numbers for any given quadrilateral face

Fig. 14. Top: two hexahedral cells with an adjoining
face. Bottom left: a tetrahedralization for these two
cells that results in a break in connectivity. Bottom
right: a good tetrahedralization that leaves connectivity
intact.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
8

are going to match no matter which of the two
cells share that face, both cells will locally make
the same decision and ensure good connectivity
remains. See Fig. 15 for an example.

While we now have a local solution that we
can implement, there remain some significant
hurdles to doing a full volumetric reconstruction
in three dimensions using tetrahedralization. The
first problem is that the logic described above to determine the appropriate
tetrahedralization is not trivial to implement, either in terms of code complexity or final
speed. A more inherent problem is that even the common hexahedral cell will be split
into a minimum of at least five, and usually six, tetrahedra. Thus, interface reconstruction
now must operate on a data set with almost six times the number of cells as the original,
with all the associated downsides such as memory usage, time to do the reconstruction
calculation, and the number of polygons in the final surface.

One other downside to doing
tetrahedralization before the
reconstruction is a visual artifact I will
call interpolation imprinting. Fig. 16
explains the situation in two dimensions
for simplicity. The square on the left of
the figure shows a 2D cell that will have
reconstruction performed. Since
according to our visualization setup the
blue material is greatest in the lower-left
corner and the green material is greatest
at the other corners, we know that our
reconstruction algorithm finds edge
material intersections and in this case will
find a blue/green intersection along the
left edge and along the bottom edge.

However, we first need to perform a tetrahedralization, and the 2D analogue would be
to split this square into triangles. The top path of Fig 16 shows one way it might happen,
and the bottom shows another way, and both of these are equally likely to occur based on
our node-index scheme. Recall that we are only doing edge material intersections, and
note that on the bottom path we have created a new edge – the diagonal – along which to
interpolate material values and along which we must by definition have another
intersection. This upper-right value in the original square cell was not used in calculating
the original edge intersections and in general cannot create an intersection which causes a
smooth surface in the final reconstruction; the bent red line in the bottom path is an
example of what often results.

267

115

449

333

267

115

449

333

Fig. 15. Example indexing for a shared
face its implicit subdivision.

Fig. 16. Interpolation imprinting: an arbitrary
choice of cell splitting before reconstruction can
cause unintended wobbles in the reconstructed
interface.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
9

The Zoo Based Algorithm
Can we create an algorithm that will perform a volumetric reconstruction while

avoiding both the need to work with arbitrary polyhedra and the need to split the mesh
into tetrahedra? Can we use it to avoid the interpolation imprinting artifact entirely? And
furthermore, we would like one further ideal: is it possible to require that we split cells
into the geometric minimum number of output shapes? For example, if we take a cube
and slice it in half along its axis, can we create an algorithm that will be guaranteed to
return exactly two hexahedra as output shapes? The answer to all these is yes.

First in Two Dimensions
Let us return to the two-dimensional world, assume we have created an algorithm

which gives us the ideal results just described, and examine how this works. We make
the common assumption that 2D cells are only triangles or quadrilaterals.

In fact, we will start at the simplest possibility geometrically as the input to a stage in
our new reconstruction algorithm: triangles. Fig. 17 shows the full range of ways in
which we may split a triangle (which, by symmetry, is only two different ways). The first
is the trivial split: a triangle is the input shape, we found no intersections, and have the
full input triangle as the output. The second is the nontrivial split: a triangle is the input
shape, one (or symmetrically two) nodes were of a
different material, and the output is one
quadrilateral and one triangle. For this second case,
suppose we now want to visit a third material in a
subsequent stage in our reconstruction. At this
point, we had better understand how to handle
quadrilaterals as input to our reconstruction
algorithm, or else we have reached an impasse.

So let us examine what might happen if we take
quadrilaterals as input to a reconstruction stage.
Fig. 18 shows all the possibilities here as well,
which by symmetry is only four different ways.
The first is the trivial split, with a quad as input
and a quad as output. The last is the on-axis
split, with a quad as input and with two squished
quads as output. The other two are the difficult
ones, as one has a pentagon as output and the
other has a hexagon.

The difficulty here may be obvious: we might
have a five- or six-sided polygon as input to our
next stage, and splitting those again might create
up to nine-sided polygons as input to the next
stage, and so on. One solution is to handle arbitrary polygons. The other is to split those
shapes into triangles and deal with those. This is, in fact, simply a rephrasing of the

Fig. 17. All clipping cases for
triangles.

 Fig. 18. All clipping cases for quads.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
10

reasons in three dimensions that led us to tetrahedralization – we know what to do with
triangles/tetrahedra, and we don’ t want the complexity of arbitrary polygons/polyhedra.
More specifically, if we want to avoid the arbitrary polygons, we need to have closure
over the input and output shape types, and the easiest way to do that is by having the
output of any splitting operation be triangles.

However, one fact might be more clear now that we have investigated the problem in
some detail in the two-dimensional setting: we don’ t have to split the pentagon and
hexagon into triangles. In fact, our hexagon can be handled by splitting it into two
quadrilaterals, and our pentagon can be handled by
splitting it into one triangle and one quadrilateral. By
doing this, we now no longer have up to 6 total output
shapes by splitting one input quad, we only have up to
4. And we have simultaneously limited the output
shape types to only triangles and quadrilaterals, which
we know how to handle. In other words, we have cut
down on the quantity of cells we need to handle while
maintaining closure of the input/output shape types.

There is one open issue before claiming the two-
dimensional case is solved: there are three different
ways to split a hexagon into two quadrilaterals, and five
different ways to split a pentagon into a quad and a
triangle – which of these ways should we subdivide? While any method of making this
decision would suffice, one way turns out to be better than the others because it is
unambiguous: if you have to split the corner off a quadrilateral, force another split along
the parallel diagonal of that split. This is shown in Fig. 19.

Thus, the combination of the splitting cases in Figures 17 and 19, when symmetry is
added, result in a complete closed solution for two dimensional clipping without resorting
to arbitrary polygons or triangulating all input cells.

The Zoo Extension into Three Dimensions
Let us now move back to three dimensions. However,

instead of showing the full solution, I will show two
examples. First, we have one ideal hexahedron splitting
shown in Fig. 20, where the split is cuts the hex into two
new squished hexes.

We have another ideal hexahedron splitting shown in
Fig. 21. This one cuts one edge off the hexahedron, and
the shape cut off with the edge is a wedge, or triangular
prism. This is exactly one of the shapes in the finite
element zoo. However, note that when we make this cut,
the top and bottom face of the original hex are now cut
into one triangle and one pentagon. This is a real

Fig. 19. Clipping cases for quads
with triangle/quad closure.

hex hex

Fig. 20. One ideal clip for a hex.

wedge hex wedge

Fig. 21. Another ideal clip.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
11

difficulty, because while we would like every time
we split an input shape to result in only two output
shapes, it is not possible here because none of the
shapes in our finite element zoo (see Fig. 22) has a
pentagon as a face. Thus we must create a total of at
least three shapes as the output for Fig. 21. By
making full use of the cells at our disposal in the
finite element zoo, we have done exactly that as
shown in Fig. 21. Thus in this case we have also
created the geometric minimum number of output
shapes without using arbitrary polyhedra.

The fact that all of the 3D shapes in the finite
element zoo have only triangles and quadrilateral as
faces is actually critical to the 3D solution. Apart
from the simplicity of explanation, this was another
reason to demonstrate the concept in two

dimensions: we simply apply the solution for 2D polygons to the faces of three
dimensional cells. For example, this is what we did to the top and bottom faces of Fig. 21
– we cut along the corner, and effected another split along the parallel diagonal. This
guarantees that we will never have anything but a triangle or quad as face for an output
shape.

This also highlights the danger of ambiguity in which way to split the pentagons or
hexagons that might result in 2D: we are performing the same operation on the faces of
3D cells, and these faces must be split the same way no matter which of the two cells that
share a face we are operating on.

With the 2D solution now applied to the faces of 3D cells, can we always split an
input cell cleanly into output shapes from the zoo? In other words, it was a necessary
condition, but was it sufficient to guarantee closure in the zoo?

The answer is actually “No”, but it turns out not to matter. In some cases, you cannot
group the newly created faces into meaningful output shapes without adding extra edges
along some of these faces. This is, of course, not allowed, because we have no way to
guarantee that our neighboring cell will add the same edges. Instead, we add a new point
on the interior of the output shape and create tetrahedra and pyramids from this new point
to the triangles and quads we have guaranteed as output shapes. This sounds like many
more shapes than we would like, but remember the following facts. First, the tets and
pyramids we output are part of the zoo, so we have thus ensured closure. Second, it is a
last resort reserved for hard cases only; most of the cases can be solved with fewer
shapes. Third, remember that we are comparing the number of output shapes against the
method where we tetrahedralize the cell before attempting to cut it.

In short, applying the lessons from 2D results in the geometric minimum number of
output shapes and always results in a complete closed solution for clipping 3D cells
without resorting to arbitrary polyhedra.

Tetrahedron Pyramid

HexahedronWedge

Fig. 22. The three-dimensional shapes
in the finite element zoo.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
12

Qualitative Results
In Fig. 23, we see the value of a

continuous interface. The image on the left
was generated with a PLIC algorithm, and the
discontinuities not only look bad but would
cause difficulties when performing other
visualization or analysis operations on this
reconstruction. The image on the right was generated with the continuous VisIt algorithm
and has none of those problems.

In Fig. 24, the left image was generated
with the isosurface algorithm. Notice that
where three materials meet, a large void has
appeared. The VisIt algorithm ensures there
are no gaps between materials.

In Fig. 25, we see one advantage of a
volumetric reconstruction. In the left image,
we needed to slice the volume fractions before
we could perform reconstruction, because it
requires a volumetric algorithm to be able to
reconstruct before slicing. The reason for the
poor material boundaries is that slicing volume
fractions is not physically meaningful; the
materials are not evenly distributed throughout
the cell. The image on the right was generated
with the VisIt algorithm performing
reconstruction before the slice.

In Figs. 26 and 27, we see the advantages
of the zoo-based approach to clipping cells.
The left image in Fig. 26 split every mixed cell
before reconstruction just as a
tetrahedralization approach would. In fact,
this is an optimistic picture because many
tetrahedralization approaches would also split
every clean cell. However, the zoo-based
approach has no need to split clean cells
except when necessary to guarantee
connectivity, and even when splitting mixed
cells does it as few times as possible. In Fig.
27, we see how using fewer unnecessary splits
in the zoo-based approach results in fewer
interpolation artifacts.

Fig. 23. PLIC vs. Zoo-based

Fig. 24. Isosurface vs. Zoo-based

Fig. 25. Surface vs Volumetric
Reconstruction

Fig. 26. Tetrahedralizing vs. Zoo-based
subdivision

Fig. 27. Tetrahedralizing vs. Zoo-based
interpolation

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
13

Quantitative Results

In Figures 28 - 30, we compare the performance of the predecessor reconstruction
algorithm in VisIt (orange), which was a volumetric tetrahedralization method, to the new
algorithm in VisIt (blue), which is the finite element zoo based approach described in this
paper. One important point to note is that the tetrahedralization algorithm was highly
optimized over a period of two years, and among other improvements it is able to avoid
tetrahedralization on all but the mixed cells, and it can avoid re-tetrahedralizing split tets
if they are not used as input to another stage in the same cell.

These examples are all real-world problems. Example 1 has 512 domains, 20 million
cells, 30 materials, and was run in parallel on 64 processors. Example 2 has 300,000
cells, 17 materials, and was run on 1 processor. Example 3 has 420,000 cells, 30
materials, and 3 domains, and was run on 1 processor.

In Fig. 28, we see that on average, execution time has decreased by about 3x. In Fig.
29 (the scales are normalized to the old algorithm), we see that the output cell count has
also decreased by a factor of about 3x. In Fig. 30, we see that the number of output
triangles has decreased by a factor of just over 2x in each case.

Conclusions
We have first provided some background information on material interface

reconstruction and how it has been implemented in the past. In addition, we have
discussed in detail the previous algorithm used by the VisIt visualization code and
explained its strengths and weaknesses.

Finally, we presented a new algorithm that greatly improves upon the previous ones in
terms of realism, quality, and speed. The resulting algorithm are runs several times faster

4.4 sec

2.1 sec

3.5 sec

7.1 sec

8.7 sec

10.8 sec

0 2 4 6 8 10 12

��������

�������	

�������

Seconds

Fig. 28. Execution time.

32.7 M

1.3 M

0.49 M

1.8 M

90.0 M

2.8 M

��������

�������	

�������

Cells

Fig. 29. Output cell count.

128k

86k

163k

182k

279k

350k

0 100 200 300 400

��������

�������	

�������

Triangles x1000

Fig. 30. Output triangle count.

Tetrahedral Volumetric (old VisIt algorithm)Tetrahedral Volumetric (old VisIt algorithm)

ZooZoo--based Volumetric (new VisIt algorithm)based Volumetric (new VisIt algorithm)

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL-CONF-209351

Meredith, J.S.

UNCLASSIFIED
14

than the previous volumetric reconstruction in VisIt, uses one third the memory, avoids
floating point numeric hashing entirely, always retains perfect logical connectivity, cuts
the volumetric cell count down by a factor of three and thus speeds up subsequent
operations on the reconstructed dataset by the same factor, results in about half the
polygons, improving rendering speed by a factor of two and resulting in smoother, more
accurate output with fewer interpolation artifacts.

Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy by the

University of California, Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48.

References
Amsden, A. A. “The Particle-in Cell Method for the Calculation of the Dynamics of

Compressible Fluids” , Los Alamos Scientific Laboratory Report LA-3466. (1966).

Nichols, B. D., and Hirt, C. W. “Methods for Calculating Multi-Dimensional, Transient
Free Surface Flows Past Bodies” , First International Conference on Numerical Ship
Hydrodynamics, Gaithersburg, MD. (1975).

Noh, W. F., and Woodward, P. “SLIC (Simple Line Interface Calculation)” , Lecture
Notes in Physics, 59, Springer Verlag. (1976).

Parker, B. J., and Youngs, D. L. “Two and Three Dimensional Eulerian Simulation of
Fluid Flow with Material Interfaces”, Third Zababakhin Scientific Talks, Kyshtim,
USSR. (1992).

